REV1 promotes PCNA monoubiquitylation through interacting with ubiquitylated RAD18.

نویسندگان

  • Zhifeng Wang
  • Min Huang
  • Xiaolu Ma
  • Huiming Li
  • Tieshan Tang
  • Caixia Guo
چکیده

Translesion DNA synthesis (TLS) is a mode of DNA damage tolerance which plays an important role in genome mutagenesis and chromatin integrity maintenance. Proliferating cell nuclear antigen (PCNA) monoubiquitylation is one of the key factors for TLS pathway choice. So far, it remains unclear how the TLS pathway is elaborately regulated. Here, we report that TLS polymerase REV1 can promote PCNA monoubiquitylation after UV radiation. Further studies revealed that this stimulatory effect is mediated through the enhanced interaction between REV1 and ubiquitylated RAD18, which facilitates the release of nonubiquitylated RAD18 from ubiquitylated RAD18 trapping, after which RAD18 is recruited to chromatin for its TLS function. Furthermore, we found that this stimulatory effect could also be detected after exposure to hydroxyurea or mitomycin C, but not methyl methanesulfonate (MMS), which is in line with the fact that ubiquitylated RAD18 could not be detected after exposure to MMS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6. Regulation of Y-family translesion synthesis (TLS) DNA polymerases by RAD18

The recruitment of the error-prone Y-Family Translesion Synthesis (TLS) DNA polymerases (Pol , Pol , Pol , and REV1) to damaged chromatin is partly dependent on their association with Lysine 164 (K164)mono-ubiquitylated PCNA. RAD18 is the major PCNA K164-directed E3 ubiquitin ligase in eukaryotic cells and therefore plays potentially important roles in TLS and mutagenesis. Accordingly, there is...

متن کامل

PCNA monoubiquitylation and DNA polymerase η ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae

7,8-Dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic DNA lesion. In Saccharomyces cerevisiae, the 8-oxoG DNA N-glycosylase (Ogg1) acts as the primary defense against 8-oxoG. Here, we present evidence for cooperation between Rad18-Rad6-dependent monoubiquitylation of PCNA at K164, the damage-tolerant DNA polymerase eta and the mismatch repair system (MMR) to prevent 8-oxoG-induced muta...

متن کامل

Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1

REV1 is central to the DNA damage response of eukaryotes through an as yet poorly understood role in translesion synthesis. REV1 is a member of the Y-type DNA polymerase family and is capable of in vitro deoxycytidyl transferase activity opposite a range of damaged bases. However, non-catalytic roles for REV1 have been suggested by the Saccharomyces cerevisiae rev1-1 mutant, which carries a poi...

متن کامل

RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network

The Fanconi anemia (FA) network is important for the repair of interstrand DNA cross-links. A key event in FA pathway activation is the monoubiquitylation of the FA complementation group I (FANCI)-FANCD2 (ID) complex by FA complementation group L (FANCL), an E3 ubiquitin ligase. In this study, we show that RAD18, another DNA damage-activated E3 ubiquitin ligase, also participates in ID complex ...

متن کامل

Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance

Unrepaired DNA damage may arrest ongoing replication forks, potentially resulting in fork collapse, increased mutagenesis and genomic instability. Replication through DNA lesions depends on mono- and polyubiquitylation of proliferating cell nuclear antigen (PCNA), which enable translesion synthesis (TLS) and template switching, respectively. A proper replication fork rescue is ensured by the dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 129 6  شماره 

صفحات  -

تاریخ انتشار 2016